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Abstract. We consider a perturbation approach for the calculation of current in a discrete ratchet
system under the influence of outer noise. In the lowest order (quadratic in potential changes)
the current contains contributions of two different types. One of them is of the first order in the
transition rate changes and depends only on the amplitude of the noise and the other corresponds
to second-order perturbation and depends on the noise’s temporal correlation function. The two
types of terms correspond to two different mechanisms of rectification. The explicit calculations
are performed for a three-level model system and are compared with the numerical solution of the
corresponding master equation. The comparison shows that the perturbation approach works well
even for outer fields comparable with the ratchet potential.

1. Introduction

The kinetics of so-called driven ratchet systems have received much attention during the last five
years since its relation to the problem of cellular motors and pumps was understood, see [1–4]
for review. Thus, a variety of different continuous and discrete models was introduced [5–19],
most of them sharing the main features of the initial model of [5]. This model corresponds to
a particle in a static periodic saw-tooth potential lacking inversion symmetry. Application of a
time-dependent (periodic or stochastic) outer field with a zero mean causes the directed motion
of the particle. Although the formulation of the problem is very simple, only a few variants of
stochastically driven ratchet equations can be solved analytically. Thus the formulation of a
generally applicable approximate method could be of great value. In what follows we consider
a perturbative approach to the problem. We confine ourselves to discrete models which are
probably more relevant in the description of biophysical processes, due to the well-defined
structure of molecular states involved.

We stress here that perturbation theory is not merely an approximate computation method
but is an important tool for the classification of types of response of a nonlinear system to
(small) outer fields. Thus, the nonlinear properties of a system are described by expanding the
response function in a power series in an applied field, just as is done in nonlinear optics (see
e.g. [20]). The rectification of weak outer fields normally appears as a second-order effect.
As we proceed to show, a natural perturbation expansion for a discrete ratchet system is an
expansion in powers of the transition rates rather than the outer field itself. The transition
rates are nonlinear (exponential) functions of the outer field, so that the second-order effect in
a field stems both from the first- and the second-order contributions in transition rates. Thus,
discrete ratchets exhibit, in general, two different mechanisms of rectification, which could
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Figure 1. The structure of the array used in the considerations.

be described as due to direct and induced (parametric) nonlinearity. The first mechanism is
responsible for the rectification of fields with short correlation times. Another one, involving
the occupancies’ redistribution, is manifest only if the outer field is correlated over times which
are comparable with characteristic relaxation times of the system, i.e. when the system tends
to an adiabatic regime. These findings allow us to express the rectified current in the ratchet
through the power spectrum of the noise and to directly connect the rectification properties
with the characteristic timescales of the system and the stochastic field (‘noise’), a question
addressed in [17] for a special case of a cycling stochastic force.

2. General considerations

We begin with a master equation for continuous-time random walks of a particle on a one-
dimensional lattice with a time-dependent ratchet-type potential [13, 16], as given in figure 1.
Let pk(t) be the probability of finding a particle at sitek at timet , andwij denote the (time-
dependent) transition rates between neighbouring sitesi and j . Then the master equation
reads:

ṗk(t) ≡ d

dt
pk(t) = wk−1,npk−1(t) +wk+1,kpk+1(t)− (wk,k−1 +wk,k+1)pk(t). (1)

The ‘elementary engine’ (one period of the saw-tooth potential) consists ofn sites (n = 3 in
figure 1) and is connected to the right and to the left to site 1 of the next elementary engine
(site 4 in figure 1) and to siten of the previous one. The transition rateswij depend on the
potential differences between the different sites of the ratchet. At constant temperatureT , the
rates in equation (1) obey a detailed balance condition; using the Metropolis procedure we can
take all downhill rates to be equal, and set in this casewij = w0. The uphill rates are then:

wij (t) = w0 exp

(
−Uij (t)
kBT

)
. (2)

HereUij (t) is the energy difference between neighbouring sites andkB is the Boltzmann
constant. In what follows we keepT constant and setw0 = 1 andkBT = 1. In figure 1 the
potential differenceUij is U + V between the pairs of sites(1, 2) and(2, 3) and−2U + V
between (3,4). Changes inV modulate the overall steepness of the potential, whereas changes
inU determine the height of the saw-teeth. The regime of operation corresponding to changes
inU is quoted as a flashing regime, the changes inV correspond to a rocked one. The potential
differencesUij (t) = U0

ij +Uij (t) include the static ratchet potentialU0
ij and the time-dependent

outer potential differenceUij (t) (outer field), which will be taken to be small.
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In operation, the probabilitiesp = (p1, p2, . . . , pn) in each spatial period ofn sites are
equal to those of any other one,(mn+ 1, mn+ 2, . . . , nm+n), for allm. Then, at a given time
t , the state of the engine is characterized by(p1, p2, . . . , pn) only. This leads to a system of
n ordinary differential equations of the form:

dp(t)

dt
=W (t)p(t) (3)

with p(t0) being the vector of initial conditions,|p(t0)| =
∑

i pi(t0) = 1. HereW is a matrix
of coefficientswij (taking into account cyclic boundary conditions which are implied by the
translational invariance of the system:W1,n = wn+1,n andWn,1 = wn,n+1).

Distinguishing between the static ratchet potential and the outer field, we putW (t) =
W0 +δW (t), whereW0 is time independent (having the elementsw0

ij which satisfy a detailed-
balance condition in the absence of the outer field) andδW is a matrix ofδwij (t) = wij (t)−w0

ij .
Since we are interested in the effects of the second order in the outer field and since the
dependence ofwij on this field is given by equation (2), the perturbation expansion up to the
second order inδW is sufficient.

Let us first review some properties ofW (t), following from general requirements to
stochastic matrices (see e.g. [21]). Thus, the probability conservation implies that the sum of
the elements of each column is zero:∑

i

wij = 0 (4)

so that detW (t) = 0. This property is shared by both matricesW0 and δW . Let the
eigenvalues ofW0 be λ1 = 0, λ2, . . . , λn. The valuesλ2, . . . , λn have negative real parts
connected with the inverse relaxation times of the system. Letp1,p2, . . . ,pn denote the
corresponding (right) eigenvectors:W0p

i = λip
i . The right eigenvectorp1 corresponding

to the zero eigenvalue of the unperturbed matrix describes the stationary state of the system:
dp1/dt = W0p

1 = 0. Let us suppose that no special symmetries are present and thus
the eigenvalues of the matrixW0 are nondegenerate. In this caseW0 can be diagonalized
by a linear transformation whose matrixL is built up from pi taken as columns:L =
(p1,p2, . . . ,pn). Under a linear transformation we have:M = L−1W (t)L =M0+δM , with
M0 = diag(0, λ2, . . . , λn) andδM = L−1δW (t)L. Here diag(. . .) denotes a diagonal matrix
with the elements listed in brackets. Now, letqi be the left eigenvector ofW0 corresponding
to the eigenvalueλi : qiW0 = λiqi , so thatq1W0 = 0. From equation (4) it then follows that
all elements ofq1 are equal. Note that the matrixL−1 is built from qi taken as lines since
the diagonalization procedure implies thatL−1W0 = M0L

−1. Thus the first line ofL−1 is
proportional to(1, 1, . . . ,1) and all elements in the first line inδM vanish:

(δM)1l =
∑
j,k

(L−1)1j δwjkLkl ∝
∑
k

Lkl
∑
j

δwjk = 0. (5)

We note that for an unbiased ratchet system the stationary state corresponds to the
thermodynamic equilibrium. Moreover, we confine ourselves to the overdamped system
where the relaxation to equilibrium in an unperturbed system takes place aperiodically, without
oscillations. In this case all eigenvalues other thanλ1 are real and negative and can be associated
with inverse relaxation times of the system,λi = −τ−1

i .
Let ei = L−1pi be the eigenvectors ofM0. In the basis of vectorsei we can expand the

time-dependent solution near the equilibrium one, i.e. look for a solutionx(t) = L−1p(t) in
the form:

x(t) = e1 + x1(t) + x2(t) + · · · (6)
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whereδxi can be determined recurrently by

ẋi −M0xi = δMxi−1 (7)

with x0 = e1. Let us imagine that the outer field was switched on att = t0 and that for
t < t0 the system was in equilibrium. This assumption implies the initial conditionsxi = 0
for all i > 0. IntroducingE(t) = exp(

∫ t
0 M0(t

′) dt ′) = diag(1, eλ1t , . . . ,eλnt ) we can write
the solution of equation (7) in the formxi (t) = ∫ t

t0
dt ′E(t − t ′)δM(t)xi−1. In the limit

t0→−∞ one then obtains:

x1 =
∫ t

−∞
dt ′E(t − t ′)δM(t)e0 (8)

x2 =
∫ t

−∞
dt ′E(t − t ′)δM(t)x1(t) =

∫ t

−∞
dt ′E(t − t ′)δM(t ′)

×
∫ t ′

−∞
dt ′E(t ′ − t ′′)δM(t ′′)e1 (9)

etc. Now one can return to a site-basis by a back-transformationp = L−1x.
In order to calculate the current through the bond connecting the sitesi andi + 1 of the

system we introduce the current operator, corresponding to a scalar product ofp with a vector
J = (0, . . . , wi,i+1,−wi+1,i , . . . ,0)whose only nonzero elements are the ones on placesi and
i + 1. Thus,j (t) = J(t)p(t). Note that againJ(t) = J0 + δJ(t) and thatJ0p

1 = 0 in the
case when the stationary state is assumed to be an equilibrium one.

Thus, in the second order of perturbation theory one has:j (t) = J(t)p(t) = δJ(t)p0 +
J0p1(t) + δJ(t)p1(t) +J0p2(t). Averaging this expression over different realizations of noise
one gets:

J = J(t)p(t) = δJ(t)p0 + J0p1(t) + δJ(t)p1(t) + J0p2(t). (10)

The averaging over the realizations of the stochastic outer field is commutative both with time
integration and with linear transformationL. Thus,

p1 = L−1x1 = L−1

(∫ t

−∞
dt ′E(t − t ′)

)
δMe1 = L−1T (t)δMe1 (11)

whereT (t) = diag(t, λ−1
i ). Note that althoughT11(t) = t , no terms proportional to time

are actually contained in equation (11) since, according to equation (5),(δMe0)1 vanishes
identically. On the other hand

x2 =
〈 ∫ t

−∞
dt ′E(t − t ′)δM(t ′)

∫ t ′

−∞
dt ′E(t ′ − t ′′)δM(t ′′)e1

〉
=
∫ t

−∞
dt ′E(t − t ′)

∫ t ′

−∞
dt ′′〈δM(t ′)E(t ′ − t ′′)δM(t ′′)〉e1. (12)

Now, the matrixF (t ′, t ′′) = 〈δM(t ′)E(t ′ − t ′′)δM(t ′′)〉 has the elements

Fij (t1, t2) =
〈∑

k

δMik(t1)e
λk(t1−t2)δMkj (t2)

〉
=
∑
k

eλk(t1−t2)〈δMik(t1)δMkj (t2)〉. (13)

(Equation (5) leads again to the fact that all elements proportional tot actually vanish.) For
a system driven by a homogeneous random process the correlation functionsCik,kj (t1, t2) =
〈δMik(t1)δMkj (t2)〉 depend only ont2 − t1. The second integral in equation (12) is now
independent oft ′ and thus the first integration can be immediately performed:

x2 = T (t)
∫ 0

−∞
dτ F (τ )e1 (14)
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from whichp2 follows by linear transformation. Note that sincex does not contain elements
which grow with time, the elements ofp2 are linear combinations of the integrals of the form∫ 0
−∞ dτ e−λkτC(τ). Changing the variable of integration fromτ to−τ one notices that these

terms correspond to the Laplace transforms of the correlation functions ofδM, with the Laplace
variable corresponding to the eigenvalues (inverse relaxation times) of the system. The same
procedure can be applied when calculatingδJ(t)p1(t)where the integrals of a similar structure
appear.

We note here that the mean current, equation (10), can be considered as a sum of
two contributions of a different form:J = J1 + J2. J1 = δJ(t)p0 + J0p1(t) is of
first order inδw and thus only depends on one-time characteristics of the transition rates.
J2 = δJ(t)p1(t)+J0p1(t) is of second order and depends on the two-time correlation properties
of δwij . Remembering now thatwij (t) = exp(−Uij − δUij (t)), so thatwij = exp(−Uij ) and

δwij = wij (−δUij +δU2
ij /2+· · ·)we see thatδwij = δU2

ij /2 and that the two-time correlators
of the transition rates can be expressed through the corresponding correlator of outer fieldδU .
Thus, the first-order terms are all proportional to the mean square value of the outer potential
and do not depend on its correlation properties. On the other hand the second-order terms
depend explicitly on the two-time correlation functions of the outer field.

3. Results for a model system

Let us return to a model system as shown in figure 1, i.e. to a three-level ratchet. For this
system one has:

W =
(−(x(t) + y(t)) 1 1

y(t) −(1 +y(t)) 1
x(t) y(t) −2

)
(15)

where

y(t) = w12 = w23 = exp

(
−U12(t)

kBT

)
(16)

and

x(t) = w43 = exp

(
−U31(t)

kBT

)
. (17)

We suppose bothx(t) andy(t) to be smaller than unity. Letx andy be the values ofx(t) and
y(t) in the absence of an outer potential, so that

W0 =
(−(x + y) 1 1

y −(1 +y) 1
x y −2

)
(18)

and

δW (t) =
(−(δx(t) + δy(t)) 0 0

δy(t) −δy(t) 0
δx(t) δy(t) 0

)
. (19)

The eigenvalues ofW0 areλ1 = 0,λ2 = −(1 +x + y) andλ2 = −(2 +y). The corresponding
right eigenvectors are

p1 = 1

(2 +y)(1 +x + y)

( 2 +y
2y + x

x + xy + y2

)

p2 =
( 1− x
y − 1
x − y

)
and p3 =

( 0
1
−1

) (20)
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(the first one is taken to be normalized to unity). From this the form of the matricesL and
L−1 follow. In what follows we calculate the average current through the 34 (i.e. 31) bond,
and thus takeJ(t) = (−x(t), 0, 1). The straightforward calculations following the scheme
outlined in the previous section then give

J1 = − 1 +y + y2

(2 +y)(1 +x + y)2
δx +

x2 + 3y2 + xy2 + 6xy + 3x + 4y

(2 +y)2(1 +x + y)2
δy (21)

and

J2 = 1 +y + y2

(2 +y)(1 +x + y)2
[Fxx(1 +x + y) + Fxy(1 +x + y)]

+
y2 + y + xy − x2 − x2y − 1

(2 +y)(1 +x + y)2(x − 1)
[Fyx(1 +x + y) + Fyy(1 +x + y)]

+
3x − x2 − xy − y2

(2 +y)2(1 +x + y)(x − 1)
Fyy(2 +y)

− y − 1

(2 +y)(1 +x + y)(x − 1)
Fyx(2 +y) (22)

whereFab(z) =
∫ t

0 e−ztCab(t) dt . HereCab(t) are the correlation functions of the type
Cab(t) = 〈δa(0)δb(t)〉, with a andb beingx or y. Turning to an unbiased ratchet, which
would be in equilibrium for a zero outer field, one hasx = y2, so that all coefficients in
equation (21), (22) are functions ofy only:

J1 = −f (y)(δx − 2yδy) (23)

and

J2 = f (y)
{
Fxx(A) + Fxy(A) +

1− y − y2

1 +y
[Fyx(A) + Fyy(A)]

+
1

1 +y
[y2Fyy(B)− Fyx(B)]

}
(24)

with f (y) = (2 +y)−1(1 +y + y2)−1. On the other hand the relations betweenδx andδy and
the relations between differentF -functions depend on the mode of operation.

Let us first consider the rocked ratchet, for which the values ofUij are modulated by the
additive outer potential differenceV (t) applied between each pair of the neighbouring sites,
see [13, 16]. In this case one has

y(t) = exp(−U − V ) (25)

and

x(t) = exp(−2U + V ) (26)

withV (t) = 0. One readily getsy = exp(−U) andδy = y[−V (t)+V 2(t)/2+· · ·]. Moreover,
x = exp(−2U) = y2 andδx = y2[V (t) + V 2(t)/2 + · · ·]. Substitution of these values into
equation (23) gives

J1 = y2f (y)v2/2 (27)

where we have introduced the variance of the outer potentialv2 = V 2(t). Note thatJ1 is always
positive. Calculating theF -functions in the lowest order inV we get:Fxx(z) = x2FVV (z) =
y4FVV (z), Fxy(z) = Fyx(z) = −y3FVV (z) andFyy(z) = y2FVV (z), so that

J2 = f (y)
[
y2 2y3− 3y + 1

1 +y
FVV (1 +y + y2) + y3 1− y

1 +y
FVV (2 +y)

]
(28)
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Figure 2. The behaviour of the overall current in a rocked ratchet and its first- and second-order
contributions as functions ofy for the exponentially correlated noise withτ = 1, see text for details.
Plotted areJ (solid curve),J1 (dashed curve) andJ2 (dotted curve). The crosses denote the results
of numerical simulation.

which is also quadratic in the potential’s amplitude. For example, for a dichotomic noise with
the correlation function

CVV (t) = v2 exp(−|t |/τ) (29)

one gets:FVV (z) = v2τ
1+zτ . The behaviour ofJ1(y), J2(y, τ ) and of the overall currentJ as

functions ofy is shown in figure 2 forτ = 1. The functionsJ = J/v2, J1 = J1/v
2 and

J2= J2/v
2 are plotted. Note that in the case considered the largest contribution to the overall

current stems from the first-order term that does not depend on the correlation properties of the
noise and which is a monotonously growing function ofy. On the other hand, the second-order
term shows the reversal behaviour, but is too small to cause the overall current reversal. We
also note that the current in a rocked system stays finite both in the casesτ → 0 (white noise)
andτ →∞ (adiabatic regime).

To assess the numerical accuracy of the perturbation approach we compare the behaviour
of J as a function ofy with the one obtained through the numerical solution of equation (3)
with W (t) given by equations (15), (25) and (26) using the Eulerian scheme with time step
1t = 0.01. The outer field of the constant absolute valuev is chosen to simulate a Markovian
dichotomic process with correlation function, equation (29). Thus, with probability1t/τ

per integration step, the sign ofV (t) is chosen anew. The averaging is performed over the
time T = 105τ . The results of numerical integration are shown in figure 2 as crosses for
the amplitude of the outer fieldv = 0.1; the coincidence of the results is excellent. We also
note that even forv as large as one, the difference between the numerical results and the
perturbation predictions does not exceed 10% within the range 0< y < 1. The same good
quality of approximation was demonstrated when we considered another dichotomic process,
in which the change of sign of the outer field takes place with probability1t/τ per integration
step. For this processFVV (z) = v2τ(zτ+3)

(zτ+2)(zτ+1) .
Let us now turn to the flashing case, for which

y(t) = exp(−U0)

[
1− δU(t) +

δU2(t)

2
+ · · ·

]
(30)
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Figure 3. Same as in figure 2, now for a flashing case (see text for details). Note that bothJ1 and
J2 are monotonous and have opposite signs.

and

x(t) = exp(−2U0)[1− 2δU(t) + 2δU2(t) + · · ·] (31)

so thatδy(t) = y[−δU(t)+δU2(t)/2+· · ·] andδx(t) = y2[−2δU(t)+2δU2(t)+· · ·]. For this
case we getFxx(z) = 4y4FUU(z), Fxy(z) = Fyx(z) = 2y3FUU(z) andFyy(z) = y2FUU(z).
Equation (23) now gives:

J1 = −y2f (y)v2 (32)

with v2 = δU2(t). This expression forJ1 is always negative. The expression forJ2 reads

J2 = f (y)
[
y2 2y3 + 3y2 + 3y + 1

1 +y
FUU(1 +y + y2)− y3 2 +y

1 +y
FUU(2 +y)

]
. (33)

The behaviour ofJ1(y), J2(y, τ ) and of the overall currentJ for the field withCUU(t) =
v2 exp(−|t |/τ) (with τ = 1) is shown in figure 3. Again, the crosses denote the results of
the numerical integration forv = 0.1. Note that in this caseJ is a (small) difference of two
large contributions. We must note that in this case the approximation is more critical to the
amplitude of the outer field, leading forv = 1 to deviations as large as 30%. Considering
theτ -dependence of the current we find that for very slowly varying noise(τ → ∞), when
FUU(z)→ v2z−1, the contributions fromJ1(y) andJ2(y, τ ) compensate each other exactly,
so that in the adiabatic case the flashing system produces no current. This is no surprise, since
such a system with multiplicative noise is, in this case, always in equilibrium.

We stress here that in both cases, the rocked and the flashing one, the system can easily
rectify the noise which is almost white. We note that the impossibility to rectify white noise by a
continuous ratchet (the disappearance of a ratchet effect in a high-frequency limit [18]) is to no
extent a consequence of general thermodynamics, but a rather special property of a continuous
rocked model, whose internal noise is also white, cf [19], where a white-noise-driven flashing
ratchet is considered.

Let us now turn to the case of the coloured noise correlated over very long times. In
figure 4 we plot the behaviour of the current as a function ofy for rocked and flashing models,
where we takeCVV (t) to follow a power law:CVV (t) = 1/(1+|t |/τ)γ with τ = 1 andγ = 0.5
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Figure 4. They-dependence ofJ (y) for ratchets under power-law-correlated noise (solid curves)
with γ = 0.5 andγ = 1 and under exponentially correlated noise (dashed lines, identical with
theJ -dependencies of figures 2 and 3, respectively). The upper curves correspond to the rocked
case, and the lower curves to the flashing case. The curves corresponding to different power-law-
correlated noises for a rocked ratchet are indistinguishable on the scales of the plot.

andγ = 1. The last case corresponds to the type of noise considered in [22]. The functions
FVV (z) are given respectively byFVV (z) =

√
π/zezerfc(

√
πz) andFVV (z) = −ezEi(−z),

see [23]. The behaviour ofj (y) in these cases (shown in solid curves) is compared with
those for an exponentially correlated noise (dashed curves). Note that all differences are of a
quantitative nature. For a flashing system the values of the current under different types of the
noise differ considerably, but the qualitative behaviour of the curves remains the same. For a
rocked system these differences are marginal (sinceJ2 depending on the temporal correlations
is small compared withJ1); the curves for the two types of power-law correlated noise are
indistinguishable on the scales of the plot.

4. Conclusions

We have considered a perturbative approach to the calculation of current in discrete ratchet
systems. We have shown that in the lowest (quadratic) order in the outer field the current
consists of two contributions, describing two different mechanisms of rectification. One of
them appears as a first-order perturbation in the transition rate changes and is independent of the
temporal correlations of the noise. This mechanism is responsible for the rectification of noise
whose correlation time is small compared with the characteristic relaxation times of a system. It
can be considered as a manifestation of a nonlinearity in transition rates. Another contribution
stems from the second-order perturbation and thus depends on the temporal correlation function
of the outer field. This contribution describes a typically parametric effect. We continued
with model calculations performed for a three-level discrete model of [13, 16] in rocked and
flashing regimes. The comparison of the perturbation approach with the results of direct
numerical simulations shows that the accuracy of our approximation is excellent for moderate
amplitudes of the field. The behaviour of the system under the noise showing power-law
correlations was also discussed.
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